Links to online databases

Google Scholar


[Pre3] Rufibach, K., Heinzmann, D., Monnet, A. (2019). Integrating Phase 2 into Phase 3 based on an Intermediate Endpoint While Accounting for a Cure Proportion. arxiv | R code from paper on github |

[Pre2] Meller, M., Beyersmann, J., Rufibach, K. (2018). Joint modelling of progression-free and overall survival and computation of correlation measures. arxiv

[Pre1] Beyer, U., Dejardin, D., Meller, M., Rufibach, K., Burger, H.U. (2018). A multistate model for early decision making in oncology. arxiv

Statistical publications

[22] Rufibach, K. (2018). Treatment Effect Quantification for Time-to-event Endpoints - Estimands, Analysis Strategies, and beyond. Pharmaceutical Statistics, accepted. doi

[21] Rufibach, K., Burger, H.U., Abt, M. (2016). Bayesian Predictive Power: Choice of Prior and some Recommendations for its Use as Probability of Success in Drug Development. Pharmaceutical Statistics, 15, 438-446. doi | R code from paper on github |

[20] Asikanius, E., Rufibach, K., Bahlo, J., Bieska, G., Burger, H.U. (2016). Comparison of design strategies for a three-arm clinical trial with time-to-event endpoint: power, time-to-analysis, and operational aspects. Biom. J., 58(6), 1295-1310. doi

[19] Rufibach, K., Meng, C., Nguyen, H. (2016). Comparison of different clinical development plans for confirmatory subpopulation selection. Contemp. Clin. Trials, 47, 78-84. doi

[18] Rufibach, K., Jordan, P., Abt, M. (2016). Sequentially Updating the Likelihood of Success of a Phase 3 Pivotal Time-to-Event Trial based on Interim Analyses or External Information. J. Biopharm. Stat., 26(2), 191-201. doi | R package bpp |

[17] Dümbgen, L., Rufibach, K., Schuhmacher, D. (2014). Maximum-Likelihood Estimation of a Log-Concave Density based on Censored Data. Electron. J. Stat., 8, 1405-1437. Paper on EJS website|R package logconcens|

[16] Balabdaoui, F., Jankowski, H., Rufibach, K., Pavlides, M. (2013). Asymptotics of the discrete log-concave maximum likelihood estimator and related applications. J. R. Stat. Soc. Ser. B Stat. Methodol., 75(4), 769-790.
doi|arxiv|R package logcondiscr|

[15] Rufibach, K. (2012). A smooth ROC curve estimator based on log-concave density estimates. Int J Biostat., 8(1), 1-29. doi|arxiv|R package logcondens|
The methodology in this paper is also available in the function smooth() in the R package pROC .

[14] Rufibach, K. (2011). Selection models with monotone weight functions in meta analysis. Biom. J., 53(4), 689-704. doi|arxiv|R package selectMeta|

[13] Dümbgen, L. and Rufibach, K. (2011). logcondens: Computations Related to Univariate Log-Concave Density Estimation. Journal of Statistical Software, 39(6), 1-28. download|R package logcondens|

[12] Held, L., Rufibach, K., Balabdaoui, F. (2010). A score regression approach to assess calibration of probabilistic predictions. Biometrics, 66(4), 1295-1305. doi

[11] Balabdaoui, F., Rufibach, K., Santambrogio, F. (2010). Least Squares estimation of two ordered monotone regression curves. J. Nonparametr. Stat., 22(8), 1019–1037. doi|arxiv|R package OrdMonReg|

[10] Rufibach, K., Walther, G. (2010). The block criterion for multiscale inference about a density, with applications to other multiscale problems. J. Comput. Graph. Statist., 19(1), 175-190. doi|R package modehunt|

[9] Rufibach, K. (2010). An Active Set Algorithm to Estimate Parameters in Generalized Linear Models with Ordered Predictors. Comput. Statist. Data Anal., 54, 1442-1456. doi|arxiv|R package OrdFacReg|

[8] Rufibach, K. (2009). reporttools: R Functions to Generate LaTeX Tables of Descriptive Statistics. Journal of Statistical Software, Code Snippets, 31(1), 1-7. download|R package reporttools|

[7] Müller, S., Rufibach, K. (2009). Smooth tail index estimation. J. Stat. Comput. Simul. 79(9), 1155-1167. doi|arxiv|R package smoothtail|

[6] Balabdaoui, F., Rufibach, K., Wellner, J.A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist., 37(3), 1299-1331. doi|arxiv|R package logcondens|

[5] Dümbgen, L., Rufibach, K. (2009). Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15(1), 40-68. doi|arxiv|R package logcondens

[4] Müller, S., Rufibach, K. (2008). On the max-domain of attraction of distributions with log-concave densities. Statist. Probab. Lett., 78(12), 1440-1444. doi

[3] Balabdaoui, F., Rufibach, K. (2008). A second Marshall inequality in convex estimation. Statist. Probab. Lett., 78(2), 118-126. doi

[2] Rufibach, K. (2007). Computing Maximum Likelihood Estimators of a log-concave Density Function. J. Stat. Comput. Simul., 77(7), 561-574. doi|R package logcondens|

[1] Rufibach, K., Bertschy, M., Schüttel, M., Vock, M., Wasserfallen, T. (2001). Eintrittsraten und Austrittswahrscheinlichkeiten EVK 2000. Mitteilungen der Schweizerischen Aktuarvereinigung, 2001/1, 49-70.

Technical reports

[TR3] Hubeaux, S.*, Rufibach, K. (2014). SurvRegCensCov: Weibull Regression for a Right-Censored Endpoint with a Censored Covariate. arxiv|R package SurvRegCensCov|
* S. Hubeaux was an intern in Roche Oncology Biostatistics Basel working on this project under my supervision.

[TR2] Balabdaoui, F., Jankowski, H., Rufibach, K., Pavlides, M. (2012). The asymptotic distribution of the discrete log-concave maximum likelihood estimator and related applications: Proofs. Contains the proofs of [16] above.
R package logcondiscr

[TR1] Dümbgen, L., Rufibach, K., Hüsler, A. (2010). Active Set and EM Algorithms for Log-Concave Densities Based on Complete and Censored Data. arxiv|R package logcondens|


Invited discussions

[D1] Rufibach, K. (2010). Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density. J. R. Stat. Soc. Ser. B Stat. Methodol., 72(5), 577-578. doi

Refereed proceedings

[P2] Rufibach, K., Walther, G. (2007). Criteria for multiscale inference. Proceedings of the 56th Session of the International Statistical Institute, Lisbon, Portugal, 22-29 August 2007. R package modehunt

[P1] Dümbgen, L., Rufibach, K., Wellner, J.A. (2007). Marshall's lemma for convex density estimation. Asymptotics: Particles, Processes and Inverse problems (E. Cator, G. Jongbloed, C. Kraaikamp, R. Lopuhaä, J.A. Wellner, eds.), pp. 101-107. IMS Lecture Notes - Monograph Series 55, IMS, Hayward, USA. doi|arxiv|

Book review

[BR1] Rufibach, K. (2011). Review of "Introduction to General and Generalized Linear Models" by Henrik Madsen and Poul Thyregod. Biom. J., 53(4), 705-706. doi